Metropolis Integration Schemes for Self-Adjoint Diffusions

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Metropolis Integration Schemes for Self-Adjoint Diffusions

We present explicit methods for simulating diffusions whose generator is self-adjoint with respect to a known (but possibly not normalizable) density. These methods exploit this property and combine an optimized Runge-Kutta algorithm with a Metropolis-Hastings Monte-Carlo scheme. The resulting numerical integration scheme is shown to be weakly accurate at finite noise and to gain higher order a...

متن کامل

Comparison of two integration schemes for a micropolar plasticity model

Micropolar plasticity provides the capability to carry out post-failure simulations of geo-structures due to microstructural considerations and embedded length scale in its formulation. An essential part of the numerical implementation of a micropolar plasticity model is the integration of the rate constitutive equations. Efficiency and robustness of the implementation hinge on the type of int...

متن کامل

Commutativity, Comonotonicity, and Choquet Integration of Self-adjoint Operators∗

In this work we propose a definition of comonotonicity for elements ofB (H)sa, i.e., bounded self-adjoint operators defined over a complex Hilbert space H. We show that this notion of comonotonicity coincides with a form of commutativity. Intuitively, comonotonicity is to commutativity as monotonicity is to bounded variation. We also define a notion of Choquet expectation for elements of B (H)s...

متن کامل

From Metropolis to Diffusions: Gibbs States and Optimal Scaling

This paper investigates the behaviour of the random walk Metropolis algorithm in high dimensional problems. Here we concentrate on the case where the components in the target density is a spatially homogeneous Gibbs distribution with finite range. The performance of the algorithm is strongly linked to the presence or absence of phase transition for the Gibbs distribution; the convergence time b...

متن کامل

comparison of two integration schemes for a micropolar plasticity model

micropolar plasticity provides the capability to carry out post-failure simulations of geo-structures due to microstructural considerations and embedded length scale in its formulation. an essential part of the numerical implementation of a micropolar plasticity model is the integration of the rate constitutive equations. efficiency and robustness of the implementation hinge on the type of inte...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Multiscale Modeling & Simulation

سال: 2014

ISSN: 1540-3459,1540-3467

DOI: 10.1137/130937470